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Abstract - Preferential treatment of cows in four herds of a multiple ovulation and
embryo transfer scheme under selection was simulated. Prevalence and amount of
preferential treatment depended on a function correlated with true breeding value.
Three mixed effect linear models were compared in terms of their ability to handle
preferential treatment: the classical Gaussian model, a model with multivariate t-
distributed errors clustered by herd, and a model with independent t-distributed
errors. In the models with t-distributed errors, both the scale parameters and the
degrees of freedom were considered unknown. A Bayesian analysis was carried out
for all three models via the Gibbs sampler, and posterior means were used to infer
about genetic variance, herd-year effects, breeding values and realised response to
selection. Performance over repeated sampling was assessed via Monte Carlo mean
squared error. In the absence of preferential treatment, the three models had a
similar performance. When preferential treatment was prevalent and strong, the
univariate t-model was the best; hence, the Gaussian assumption for the errors
was clearly inappropriate. It appears that some robust linear models can handle
preferential treatment of animals better than the standard mixed effect linear model
with Gaussian assumptions. &copy; Inra/Elsevier, Paris
dairy cattle / preferential treatment / simulation / Bayesian statistics / Student-t
distribution / Gibbs sampling
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Résumé - Atténuation des effets de traitement préférentiel dans un modèle
linéaire mixte à distribution de Student (t). Étude de simulation. On a simulé le
traitement préférentiel de certaines vaches dans quatre troupeaux de sélection utilisant
la transplantation embryonnaire. La fréquence et l’effet du traitement préférentiel



ont dépendu d’une fonction corrélée à la valeur génétique vraie. On a comparé
trois modèles linéaires mixtes pour leur aptitude à prendre en compte le traitement
préférentiel : le modèle classique Gaussien, un modèle avec des erreurs t-multivariates
groupées par troupeau et un modèle avec des erreurs t-distribuées indépendantes.
Dans le modèle où les erreurs suivaient une distribution t, les paramètres d’échelle
et les degrés de liberté ont été considérés inconnus. Une analyse bayésienne a
été effectuée pour les trois modèles à partir de l’échantillonnage de Gibbs et les

moyennes a posteriori ont été utilisées pour en inférer au sujet de la variance

génétique, des effets troupeau-année, des valeurs génétiques et des réponses réalisées
à la sélection. La performance des modèles a été évaluée au travers des erreurs
quadratiques moyennes. En l’absence de traitement préférentiel, les trois modèles
ont eu une performance similaire. Quand le traitement préférentiel a été fréquent et
d’effet important, le modèle t-univariate a été le meilleur et le modèle Gaussien a été
clairement inadapté. Il apparaît que des modèles linéaires robustes peuvent prendre en
compte les traitements préférentiels mieux que les modèles linéaires mixtes Gaussiens
classiques. @ Inra/Elsevier, Paris
bovins laitiers / traitement préférentiel / simulation / statistique bayésienne /
distribution de Student

1. INTRODUCTION

Preferential treatment is any management practice that is applied non-
randomly to animals within a contemporary group [9]. For example, better
housing and feeding, hormonal treatment, longer milking intervals on test day
and feeding according to production are known to be applied selectively in
dairy production. Preferential treatment occurs in dairy cattle, presumably to
increase the economic value of a cow or the probability that it will be chosen as
a bull-dam. Several studies (e.g. [17, 20!) have found that genetic evaluations
for milk yield are inconsistent with expectations based on theory. This may
be due to inadequate statistical assumptions or failure to account properly for
selection or preferential treatment of cows.

Preferential treatment is often suspected when no apparent reasons exist for
such discrepancies. Kuhn et al. [9] simulated effects of preferential treatment
on ’animal model’ genetic evaluations. Mean squared error of prediction of
breeding values increased as the extent of preferential treatment increased.
Kuhn and Freeman [10] found that when the dam of a sire was treated

preferentially, more than 30 daughters with untreated records were needed to
offset the bias in prediction of breeding value caused by the dam’s information.
Bias increased as the proportion and number of daughters receiving preferential
treatment increased. Bias decreased when all daughters given preferential
treatment were in the same herd; this is so because the ’herd-year’ effect in the
model captures part of the preferential treatment administered in a particular
herd-year.

In order to account for preferential treatment, Harbers et al. [7] included an
environmental correlation between related females in a genetic evaluation model
for a MOET (multiple ovulation and embryo transfer) scheme. This improved
accuracy of cow evaluations when preferential treatment was mild. Weigel et al.
[29] simulated different strategies of preferential treatment and found that it

was not possible to detect it by monitoring within-herd variance; obviously,
this parameter does not provide information about the probability that a cow



within a herd is treated preferentially. Burnside and Meyer [3] simulated effects
of bovine somatotropin (bST). Sire evaluations were least accurate when bST
administration was targeted to the best producing cows.

In the context of prediction (e.g. !8]), a bias takes place when the expected
values of the predictand and of the predi!tor differ. Evaluation of bias requires
knowledge of the true model but, in practice, this is not available, so ad hoc
assessments of bias have been suggested. Several studies [15, 16, 27, 28] found
upward ’biases’ of cow’s pedigree indexes for protein or milk yield in Finnish
Ayrshire. It is unclear if this discrepancy is due to chance, but preferential
treatment of dams of cows may be a culprit. On the other hand, Powell
and Norman [19] found that pedigree indexes understated the first estimated
breeding values of daughters of proven sires mated to lower producing dams.

Little work has been undertaken on how to cope with preferential treatment
in practice, at least from a statistical point of view. Kuhn and Freeman [11]
studied power transformations of records but this was, at best, slightly effective
in reducing bias due to preferential treatment. An alternative approach is to
consider an error distribution with thicker tails than the normal, to allow for
more variation. A commonly used one is the t-distribution, which is symmetric
and leptokurtic. It has been advocated because of its simplicity [12], and
because only one parameter (the degrees of freedom) is needed to describe
robustness. A suitable robust distribution may be capable of attenuating the
impact of outliers on data analysis. Many authors have employed statistical
models with t-distributed residuals [4, 12, 13, 25, 31] in linear and non-linear
regression models, with varying degrees of success. Use of the t-distribution in
the context of mixed effects or hierarchical models is relatively recent !1, 2, 5,
6, 22-24, 26, 30].

Our objective was to assess frequentist properties of Bayesian point estima-
tors obtained from mixed linear models where residuals were assumed to be
either Gaussian or t-distributed. Milk production records obtained in herds in
which some preferential treatment was practised were simulated. The analy-
sis focused on mean squared error of estimation of genetic variance, herd-year
effects, breeding values and genetic response to selection.

2. STRUCTURE OF THE SIMULATION

2.1. Conceptual population

Milk production records in a hypothetical ’adult’ MOET nucleus scheme [18]
were simulated. The scheme extended the simple hierarchical mating structure
of Stranden et al. !21]. Our modification allowed bulls of the previous generation
to mate current generation females. The nucleus consisted of 32 cows and
eight bulls in every generation. In each generation, every nucleus cow produced
(by multiple ovulation and embryo transfer to recipients) eight offspring, four
females and four males. An animal could be selected only once into the nucleus
as a parent and unselected animals were culled. The females were selected
among those offspring to the nucleus that had completed a first lactation. Males
were selected within those that had been born in the preceding generation. In
practice, this would allow the bulls to have a progeny test outside the nucleus
before selection. However, such progeny testing was not built in this simulation.



Thus, males within a full-sib family had the same estimated breeding value and
three such males were randomly discarded. Each selected male was mated to
four cows, chosen randomly from those that had been selected as replacements.

. 
8 1 32 1 
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Selection pressure in males and females was 32 4 and 2g = -, respectively,32 4 128 4
per generation. With this scheme carried out for four generations, the data
included 544 cows with records (32 in the base plus 32 x 4 x 4 = 512 female
progeny) and 32 sires with daughters in production, i.e. a total of 576 animals.
A diagram of the simulated population is shown in figure 1.

Base generation cows were assigned to four herds in equal numbers, i.e.

eight cows per herd. Female offspring of a cow remained in the same herd
as her dam, whereas sires were used across herds. Breeding values of base
animals were drawn at random from N(0,0.25) distribution. Records of the
base animals were generated by adding a herd-year effect (independently,
normally distributed) to a breeding value and to an independently drawn
residual from N(0,0.75) distribution. Records in subsequent generations were
simulated similarly, except that the breeding value of an individual was formed

by averaging the breeding value of its parents and adding a N C0, 2 1L7 u 2(l F)J



segregation residual, where a2 is the additive genetic variance and F is
the average inbreeding coefficient of the parents. The selection criterion in
the breeding scheme was BLUP of breeding value with the true variance
components. The statistical model included the herd-year as a fixed effect and
animal as a random effect (but ignored preferential treatment, as discussed
later) using all genetic relationships available up to the time of selection.

2.2. Preferential treatment

In practice, preferential treatment takes place in the course of a selection
programme so this is the way that the present simulation proceeded. None of
the base population cows were treated preferentially, so there were 512 cows
eligible to receive preferential treatment. A scheme in which the preferential
treatment assigned depended on the ’perceived’ breeding value of an animal
(e.g. based on a genetic evaluation available before the animal produces the
record) was adopted. The records were generated as

where yij is the record of animal j made in herd-year i, hi is a herd-year effect,
Uj is the breeding value of animal j, and eij is an independent residual. The
preferential treatment 02! was a stochastic effect taking the values:

where !(.) is the standard normal cumulative distribution function, pmin is a

constant smaller than the herd-year effect hi, and u/j = !+(u!+v!) / afl + w
is a ’value’ function such that Ui rv A!(0,er!), vj - N(0, Qv), Cov(u_,,fj) = 0,
so Wj rv N(À, 1). In the preceding, 0’; is the variance of breeding values and w

j2
is an ’uncertainty’ variance. The ratio O’! 2 describes the uncertainty the herd

!u
manager has about the true breeding value of animal j. For example, if the
breeder is very uncertain about the breeding value of the animal, this ratio
of variances should be high. Three values of the uncertainty were considered,
0’2 1

- 1 = &mdash;&mdash;, 1, 100. The correlation between Wj and the breeding value Uj is
/ 100

j2 !l/2

C1 1 + ;! 2)-1/2 giving 0.995, 0.71 and 0.10 at values of the uncertainty equalB !/

to 100’ 1 and 100, respectively.100
The preferential treatment scheme in equation (2) induces a correlation be-

tween related animals Corr(u/j , Wjl) = a JJ ’10’2 u + 2 Cov( 2 v J’ VI) J where ajj, is thetween related animals Corr(iu,,w,’) = &mdash;&dquo;&mdash;!&mdash;!&mdash;&mdash;&dquo; v , where a,,’ is the
a! + a!

additive relationship between animals j and j’. If the Vj deviates are inde-

pendent, then Corr(u/j , u/j, ) = a!!!!!!(!u + o!)’ For example, if j and j’are
full-sibs and Qz = 0’;, say, then Corr(’u;_,,u!’) = !. 4 In general, the higher



the breeding value the higher the amount preferential treatment and the chance
of receiving it.

The constant pmin in equation (2) controls the range of production associated
with preferential treatment. It was set equal to -5Qh where ah is the standard
deviation of herd-year effects. These were drawn from a normal distribution
with mean zero and variance a 2 and two different values of the herd-year
variance were considered: afl = au and 2 U2 The constant A controls the
proportion of cows to be preferentially treated. Normal distribution theory can
be used to find a value of A such that a desired proportion of cows receives
preferential treatment. The proportion of preferentially treated cows increases
with .!, because Pr(u/j > 0) increases concomitantly. Three different prevalences
of preferential treatment were considered: 1 out of 10, 1 out of 32, and 1 out
of 64 cows. These correspond to A values of -1.2816, -1.8627 and -2.1539,
respectively.

It was intended to keep the proportion of preferentially treated animals
roughly constant from generation to generation. To do so, it must be noted
that selection is expected to increase mean breeding value and to reduce genetic
variance over time. In order to account for these effects, the formula for w was
changed to:

where u is the mean breeding value of animals available for preferential
treatment in the generation to which animal j belongs, and Su is the additive
genetic variance for individuals born in that generation.

The probability distribution of the amount of preferential treatment (Di!)
depends on the values of Qh and A as shown in the Appendix. The average
amount of preferential treatment actually applied was assessed via a simula-
tion of 1000 replicates of the MOET scheme. Mean increase (mean of 0) in
production due to preferential treatment under varying prevalence of prefer-
ential treatment and amount of herd-year variance is in table I. As intended,
production increased with prevalence of preferential treatment, and with or h* 2
Average value of preferential treatment was not affected by level of uncertainty
j2
2 . This is not shown in table 1, but it was expected because the distribution
Q!
of Azj does not depend on this ratio.

Table I. Average increase in simulated lactation production due to preferential
treatment as a function of herd-year variance (ah) and of prevalence of preferential
treatment (values in parenthesis are Monte Carlo standard errors from 1 000 replicates
of the MOET scheme, au = additive genetic variance).



2.3. Statistical models and computations

Three linear statistical models were compared, both with and without pref-
erential treatment incorporated in the simulation. The objective was to assess
the relative ability of these models to handle perturbations caused by unknown
preferential treatment. In all three models, the linear structure for the records
included an unknown herd-year effect (treated as fixed computationally), the
unknown breeding value of the cow and a residual, distributed according to an
appropriate error distribution, as noted below. In the three models, a multivari-
ate normal distribution N(0, Aa!), where A is a 576 x 576 relationship matrix,
was used for the genetic effects, so there was no difference in this respect. The
three models, differing only in the error distribution were the following.

1) G: a purely Gaussian model with errors Niid(0, Qe ).
2) t-l: errors were independently and identically distributed as univariate-t,
ti (0, 0’ e 2, v,). Here, the variance of the distribution is U2V,I(V, e - 2), where Qe is
a scale parameter and v, are the unknown degrees of freedom.

3) t-H: within herd i (i = 1, 2, 3, 4), the error vector ei had the multivariate-
t distribution tni (0, Ini U2, ve) where ni is the number of records in herd i. Here,
Var(ei) = I!o!fe/(fe - 2). Although the errors are uncorrelated, they are not
independent, this being a property of the multivariate t-distribution. Error
vectors in different herds were mutually independent, however, but with the
same or and ve parameters. We refer to this model as a ’herd-clustered’ one.

The G model is the usual one; model t-1 discounts outliers yzj on a ’case’

by ’case’ basis, and model t-H discounts outlying vectors yz for the entire
herd i. Because the ’value function’ w! used to generate preferential treatment
does not depend on the herd, there is no apparent reason why model t-H
should outperform model t-1. It should be noted that as Ve -j oo, the two
t-distributions tend towards the Gaussian one.

A Bayesian structure was adopted for inference. Prior distributions were the
same for all three models. Herd effects were assigned a uniform prior and, as
noted, a multivariate normal process was used as a prior distribution for the
breeding values. The dispersion components Qu and Qe were assigned inde-
pendent scaled inverted chi-square distributions with four degrees of freedom
and mean equal to the true variance component, i.e. 0.75 for the residual vari-
ance and 0.25 for the genetic variance. In the t-models, the prior for a is
for the scale of the distribution and not for the residual variance, which is

a e 2v,l(v, - 2) as noted before. In the two models involving the t-distribution,
the residual degrees of freedom parameter v, was considered unknown. Degrees
of freedom values allowed in the herd-clustered t-model were 4, 10, 100 or 1

000, all equally likely, a priori. In the univariate t-distribution model, the space
of ve was 4, 6, 8, 10, 12 or 14, all receiving equal prior probability. These values
were chosen arbitrarily. It is possible to use a continuous prior for v, [23] but
the discrete distribution employed here facilitated implementation. A Gibbs
sampler was used to carry out the Bayesian computations employing the full
conditional distributions described in Strandén [22]. Tests made in several sim-
ulations with varying starting values indicated that a burn-in period of 7 000
iterates with 70 000 Gibbs iterates thereafter (all samples kept) was enough
to obtain sufficiently precise estimates of posterior means of the parameters.



About 60 min of CPU time were required to perform 70 000 iterations, for any
of the models, in an HP 9 000(3) computer.

2.4. Frequentist comparison

Each replicate of the simulation consisted of a data set generated as per the
scheme in figure 1 under the appropriate assumptions of preferential treatment.
A Bayesian analysis of the data set according to each of the three models was
carried out in each replicate. Mean squared errors of posterior mean estimates
were computed, over replicates, for: a) genetic variance, b) herd-year effects,
and c) breeding values. Mean squared errors were also computed for three
classes of breeding values: sires, cows who had been preferentially treated and
cows without preferential treatment. d) An additional end-point of interest was
mean squared error of estimated response to selection, assessed by predicting
breeding values using posterior means from the three models contrasted. ’True’
response was the mean difference in true breeding value (due to selection using
BLUP) between animals born in the last generation and those born in the first
generation. Differences in mean squared errors between models should reflect
the relative accuracy of estimation of genetic trend.
A ’pilot run’ [14] was conducted to assess the number of replicates needed to

attain enough precision for a parameter of interest. The approximate number
of replications required to achieve an absolute precision r for the confidence
interval given a pilot run of n replicates was found using:

where ti-1,1-a/2 is the value of a t-distribution with i -1 degrees of freedom at
the 100(1 - a) percentile (’confidence’). Our pilot study consisted of carrying
n = 20 replicates for each of the three models. The number of replications re-
quired to achieve 0.05 precision with 95 % confidence for the genetic variance
was less than 60 for most cases. Hence, it was decided that all cases would
be replicated 60 times. Absolute precision was recalculated after 60 replicates,
and a further 40 replicates were made for the schemes involving 1/10 preva-

lence of preferential treatment. One scheme 92 2 = 3, -&mdash; 2 = 100 ) required an( a2 a2 1)u u 100 /
additional 40 replicates to achieve the required precision. Table II indicates the
schemes and number of replicates performed..

Because of its heavy computing requirements, the analysis was performed
using a network of machines administered by Professor Miron Livny of the
Department of Computer Science, University of Wisconsin at Madison. This
cluster was accessed using the Condor system, which allows running jobs
simultaneously at many computers while the data and program reside in one
computer. Each replicate of each model was a process to be executed in this
network of computers. There were between 10 and 15 computers available at

any time, giving at least a 10-fold increase in computing power compared to
using only the HP9000(3).



3. RESULTS AND DISCUSSION

3.1. Absence of preferential treatment

The objective here was to examine possible losses in efficiency due to using
the two t-distribution models when there is no preferential treatment and the
Gaussian assumption holds throughout. Averages and mean squared errors of
estimates of additive genetic variance are given in table III. The posterior means
of afl for each of the three models were practically unbiased, in light of the
Monte Carlo variation. However, the mean squared error was larger for the two
t-models than for the Gaussian one. Hence, if the Gaussian assumption holds,
posterior means of additive genetic variance for the t-models are less accurate
than those from the G-model. The increase in mean squared error over the
Gaussian model was about 5-6 % for the t-H model, and 7-18 % for the t-1
model.

Tables IV and Vgive the posterior distributions of the degrees of freedom for
the two t-models in the absence of preferential treatment. The analysis carried
out with the herd-clustered t-model clearly favoured a model with Gaussian
errors, as indicated by a posterior probability of about 90 % for the degrees
of freedom being larger than 10. Also, the univariate t-model assigned the
highest posterior probability, about 40 %, to the largest value of the degrees
of freedom (ve = 14) considered. The posterior distributions were not sharp,
this being a function of the low informational content the data have about
ve. However, both analyses favoured the larger values of ve or, equivalently, the
Gaussian assumption for the errors. For example, in the herd-clustered t-model,
the posterior odds ratio of v, = 1000 relative to v, = 4 was 17.7 and 29:7 for

2 = 1 and ah 2 = 3, respectively. In the univariate t-model, the odds ratio
(Ju (Ju



of v, = 14 relative to ve = 4 was 384 and 404 for the two values of the ratio
between herd and additive genetic variances.

Mean squared errors of estimates of location parameters were similar in
all models (table VI! , although slightly smaller for the G-model. As expected,
mean squared errors were larger for breeding values of cows (smallest amount of
information) than for sires. When herd-year variance was large, relative to the
additive genetic variance, mean squared error of estimation of breeding values
increased. When estimating realised response to selection, the mean squared
errors were 0.031 (G model), 0.030 (t-H model) and 0.029 (t-1 model).



In summary, in the absence of preferential treatment and with the Gaussian
assumption holding throughout, the t-models were less accurate for estimation
of Q!, but were as competitive as the Gaussian model for estimation of breeding
values and of genetic trend.

3.2. Preferentially treated data

3.2.1. Additive genetic variance

Mean squared error of estimates of additive genetic variance are in figure 2.
Differences between models were clearest when preferential treatment was
more prevalent (1/10) and when the herd-year variance was high (this affects
the distribution of 0). Also, differences between models were largest when
uncertainty about true breeding values was low, so the value function is a

high correlate of breeding value. There was little difference between the G and
the t-H models, but the univariate t-model had the best performance when
prevalence of preferential treatment was medium (1 out of 32 cows) or high
(1 out of 10 cows). The univariate t-model was robust to variation in the
uncertainty parameter; this was not the case for the G and the t-H models,
whose performance was hampered under severe forms of preferential treatment.

3.2.2. Posterior distribution of the degrees of freedom

Posterior probabilities of the degrees of freedom under the herd-clustered
t-model were often higher for the larger values of ve, thus supporting the
Gaussian model, especially when preferential treatment was uncommon, or
uncertainty was high. Only under medium (1/32) or high (1/10) prevalence
of preferential treatment and a high herd-year variance the largest values of
the degrees of freedom did not have the highest posterior probability. However,



this depended on the level of uncertainty and on the amount of herd-year
variance. For example, when prevalence of preferential treatment was 1/10 and
with (T2 = 3a’, low values of the degrees of freedom had higher posterior
probabilities when uncertainty was low; however, as uncertainty increased, the
posterior distribution tended to favour larger values of the degrees of freedom.

Posterior probabilities of v, for the univariate t-model are given in figure 3.

Here, posterior distributions tended to be flat. Higher probabilities were as-
signed to the largest values of the degrees of freedom only when preferential
treatment was rare and the herd-year variance low. As in the herd-clustered
t-model, high uncertainty often resulted in higher probabilities assigned to the
highest degrees of freedom values, as one would expect. However, other degrees



of freedom values also received relatively high probabilities. When preferen-
tial treatment was prevalent (1/10) and the herd-year variance was large, the
posterior distribution was sharp, with a modal value of ve = 4 at all levels of
uncertainty. This points away from a Gaussian distribution of the residuals.
With a small data set such as the one in this simulated MOET scheme, one
should not expect the posterior distribution of the degrees of freedom param-
eter to be highly peaked. Nevertheless, the univariate t-model recognised the
non-Gaussian situation even when prevalence was rare (1/64), provided that
the variance between herds was relatively large. This is because the expected
value of the preferential treatment, E(Di!), increased with or2 h, as illustrated in
table I.



3.2.3. Estimates of herd-year effects, breeding values and genetic
response to selection

Average of mean squared error of estimates of herd-year effects was similar
for the three models except when preferential treatment was prevalent or herd-
year variance was high, but it was always smallest for the univariate t-model
(figure l!). When preferential treatment was common (1/10), the univariate
t-model clearly had the smallest mean squared error at each level of uncertainty
and value of o,2 It *



The average of mean squared error of estimates of all breeding values is
shown in figure 5. This criterion was about the same with all models except
when preferential treatment was common and the herd-year variance high.
Here, when uncertainty was high, there were no differences between the models,
but at low levels of uncertainty, the univariate t-model was markedly superior.
The picture for mean squared errors of estimates of sire and cow breeding
values and for genetic response was similar to that for of all breeding values,
so the figures are not presented. In all cases, differences between models were
clear, favouring the univariate t-model when preferential treatment was more
prevalent (1/10). The same was true for preferentially treated cows (figure 6),
but mean squared errors were larger than for breeding values of cows that were
not treated preferentially. The univariate t-model had a similar or slightly worse



performance than the Gaussian or herd-clustered models when preferential
treatment was rare or mildly prevalent, but it was superior when such treatment
was common. In particular, at the lowest level of uncertainty and at the highest
herd-year variance, the univariate t-model gave predictions of breeding value
of preferentially treated cows that had a mean squared error of about a third
of that observed with the Gaussian model. In this situation, the herd-clustered

. model improved estimates somewhat relative to the Gaussian model.



4. CONCLUSIONS

In the absence of preferential treatment, the t-models were as good as the
Gaussian model for estimating breeding values and response to selection. When
preferential treatment was mildly prevalent (1/32) the models performed simi-
larly. However, when preferential treatment was common (1/10) and especially
when the herd-year variance was large relative to the additive genetic variance,
the univariate t-model was clearly the best, at least in terms of mean squared
error. Under preferential treatment, the posterior distribution of the degrees
of freedom in the univariate t-model pointed away from the correctness of the
Gaussian assumption. The univariate t-model was quite robust to variation in
the simulation parameters, but it is unknown whether this robustness holds
across different forms of preferential treatment.

This simulation could not differentiate clearly between the Gaussian and the
herd-clustered t-models, although the latter was always slightly better under
preferential treatment. A reason for the lack of difference between these two
models may be the low number of herds in the simulation. With a few clusters

(herds) the statistical information about the degrees of freedom is low, so the
posterior distribution of this parameter cannot be estimated accurately.

In conclusion, it appears that the univariate t-model can attenuate adverse
effects of preferential treatment as applied here. It leads to better inferences
about breeding values and genetic trends than those obtained with the Gaussian
model, especially when preferential treatment is prevalent, at least under the
conditions of the study. If, on the other hand, preferential treatment is non-
existent, or the assumption of a Gaussian distribution of the residuals seems
to be true, there is little loss in efficiency from using a robust model, such
as the univariate t. It is encouraging that a symmetric error distribution,
such as Student t, improved upon the Gaussian one under a single-tailed
form of preferential treatment as in equation (2). This suggests that a robust
asymmetric distribution may do even better, but perhaps at the expense of
conceptual and computational simplicity.
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APPENDIX: Distribution of the preferential treatment variable

When w! is positive and very large, Aij tends to hi - pm,n, so in this case
equation (1) becomes:

When w! is negative, 6.ij = 0, as indicated in (1) so yij = h2 + uj + e!.
Hence, given hi, the range in production records due to preferential treatment
is expected to be hi - pmin = hi + 5Qh = (Zi + 5)&OElig;h where zi N N(0, 1).
Unconditionally, the expected range is then 5oh. For 6.ij defined in equation
(2), the average preferential treatment applied, conditionally on hi would be

where 0,B(.) is normal density with mean A and variance 1. For A = 0, OA(-)
is the standard normal density 0(.). Because If z 00 4)(w)o(w)dw = 24)’(z) I and
!(0) =1, it follows that2

so E(Ajj) = E(E(02!!hi)) _ -!Jmin· Likewise, E(!7jlhi) = 24(h -Pmin)2 for

A = 0. Thus, 
! 

With pm;&dquo; _ -5(]’h, we have E(Di!) = 1.875(]’h and Var(02!) ! 4.068(]’!.
Then, C.V.(Aij) !! 108 % when 50 % of the cows receive preferential treatment.


